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Radiation from an Infinite Array of Parallel-Plate
Waveguides with Thick Walls

SHUNG WU LEE, MEMBER, IEEE

Abstract—A semi-infinite array of parallel-plate waveguides with
walls of finite thickness is excited by incident TEM modes in every wave-
guide identically. By proper application of the boundary conditions, two
Wiener-Hopf equations are obtained which, however, cannot be solved
by the standard techniques. A method originated by Jones [6] is applied
to recast these two equations so that the forms of the solutions are found.
The solutions involve constants to be determined by an infinite set of
linear simultaneous equations which converge absolutely. When the thick-
ness of the walls b is small compared with the wavelength 2., explicit
solutions in the order of 0(b/2.) are found in very simple forms.

1. INTRODUCTION

HE PROBLEM of radiation from an infinite array
Tof parallel-plate waveguides is of great interest
theoretically and practically. In the theoretical aspect,
it offers an excellent example for the study of periodic struc-
tures. In particular, it was one of the first problems solved
exactly by the Wiener-Hopf technique [1]. From the prac-
tical point of view, it simulates a phased array of waveguides
which is widely used in today’s communication and radar
systems. Wu and Galindo [2], for example, made an interest-
ing investigation of the mutual coupling effects of phased
arrays by using the solution of this problem.
Most of the analyses in connection with this problem are
based on the assumption that the walls of the guides are
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vanishingly thin. In practice, however, walls of appreciable
thickness are unavoidable. Therefore, it is desirable to study
the effect of this thickness on the radiation properties.
Among past works on the thick-wall probem, Epstein [3]
gave an empirical correction to the case of infinitely thin
wall based on experimental evidence. After an unsuccessful
attempt to find a rigorous theoretical solution, Primich [4]
attacked the problem by variational techniques, and ob-
tained some results checked well by experiments. Most re-
cently, Galindo and Wu [5] formulated the problem as an
integral equation which is valid for all scanning angles.
However, that integral equation, as stated by the authors, is
nonintegrable, and numerical methods using a high-speed
computer were resorted to for an approximated solution.

It is the purpose of this paper to present a solution based
on the Wiener-Hopf technique for the broadside radiation
of an infinite array of parallel-plate waveguides with thick
walls. Particularly when the thickness of the wall is small in
terms of wavelength, very simple expressions for the reflec-
tion coefficient and the radiated far field are obtained. Be-
cause of the complications and the lengthiness of the manip-
ulations, some detailed derivations are omitted in this paper;
interested readers are referred to a technical report under
the same title issued by Hughes Aircraft Company [10].

II. STATEMENT OF THE PROBLEM

Consider an infinite array of parallel-plate waveguides as
shown in Fig. 1. The thickness of the guide wall is b, and
the width of the guide is a. The dominant TEM modes are
excited inside every waveguide with equal amplitude and
phase. The problem is then to find the radiated field in the
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empty half-space z>0, and the reflected field in the wave-
guides z<0.

From Maxwell equations, it is seen that the nonvanishing
field components are H,, E,, and E, which satisfy the follow-
ing equations:

L 92
- 2 =

[+ i) =0 M
0

Ex(x) Z) = —Hy<.l‘, Z) (2)
iwey 02

Bu(x,2) = — — H,(x,2) 3)
IOT X

where k=wv/uoeo is the free-space wave number. The time
dependence exp—iwt is suppressed throughout this paper.

Since the incident waves in every waveguide are identical,
the periodic nature of this problem allows one to consider
only a unit cell, say, the cell defined by 0<x<c. Let the
incident field from the left in this cell be

H,®(x, ) = exp itkz. 4)

Furthermore, divide this unit cell into two regions, namely,
0<x<a and a<x<c, and let the total ficlds be

H,(z,2) + H,(z,2), 0<z<a
o - | S, 2) + H,9 @, 2), (5)

Hy(x, 2), a<z=<c
where the scattered field H,(x, z) satisfies the wave equation
given by (1). Introducing the following Fourier transform
pair,

oz, o) = fw H,(z, z) exp tazdz (6)

1 0
H,(z,2) = ;f o(x, o) exp (—iaz)dz )
TV
(1) becomes, after taking the Fourier transform,
62
l:g; - 72}15(96, a) =0 (8)

where y=+/a2—k%. The complex a=o-ir plane is cut as
shown in Fig. 2, and the proper branch of v is chosen such
that y—-o as « approaches infinity along the positive real
axis.
Now the problem is to solve (8) subject to the follow-
ing boundary conditions:
1) The scattered tangential electric fields are zero at the
guide wall, namely,

E(z,2) =0
Bylx,2) =0

z2<0
2z = 0.

for x = a,¢; and

fora <z <c¢; and

2) The total fields are continuous at x=a.
3) The total fields at the plane x=0 are identical to the
fields at the plane x=c.

The last condition arises from the periodic property of the
structure and the excitations.
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Fig. 1. Geometry of the problem.

T

Fig. 2. Complex a-plane and branch cut.

ITI. FORMULATIONS OF WIENER-HOPF EQUATIONS

For analytical convenience in the following discussion,
let us first introduce a small loss in the medium, i.e., k=k:
+ik, where k, is a small positive real number. Then it is
easy to show that, except for the incident field which in-
creases exponentially as z— — %, the reflected field inside the
waveguide is attenuated at least as rapidly as exp (—kzl zl)
as z—— . Outside the waveguide only the radiated field
exists, and its is attenuated as exp (—k» z) as z— . It follows
that the transformed wave equation (8) is valid only within
a strip in the complex a-plane defined by || <k Next
introduce the standard Wiener-Hopf notations:

o (z, a) = f H,(z, 2) exp tazdz (9
]

0

o_(z, ) = f H,(z, z) exp tazdz (10)
where the subscript “+ signifies that ¢,(x, «) is analytic in
the upper a-plane defined by 7>(—ks), while the subscript
“_» signifies that ¢_(x, &) is analytic in the lower a-plane
defined by r <k These and similar notations will be used
throughout this paper. Then the solution of (8) can be writ-
ten formally as, for the region 0<x<a,

¢+, @) + ¢-(z, @) = A7 4 Behr (11)

where 4 and B to be determined are functions of «. As for

the region a<x<c, a different transformed wave equation
instead of (8) should be used. Note that

© *H, .
f exp tazdz
0 022

oH, :
= - ZO{Hy(CL', O) - a2¢+(x; a)
az 2=0

(12)
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where the first term in the right-hand side is proportional
to E, which is zero at a<x<c¢ and z=0, while the second
term is unknown. Then after such a transform (1) becomes

62
[3—; — 72:1 o1 (z, @) = taH,(z,0) fora <z <ec. (13)
z

To eliminate the unknown H,(x, 0), change the sign of & and
add the resulting equation to (13). This gives

l:_az_ - 72] [6:(z, @) + bu(z, —a)] = 0

ox?

fora<z<c (14)

which is the desired wave equation. Its solution can be
written formally as, for the region a<x<e,

$+(z, a) + ¢4(x, —a) = Ce* + De=. (15)

The next step is to eliminate 4, B, C, and D by judiciously
applying the boundary conditions. Without going into de-
tail, the resultant two Wiener-Hopf equations are given here:

tanh (yb/2)

gﬂ@ww=mm— U(~a) (16)

2 K@V = — 8 ()
aby? * +a_a+k —

_ coth (yb/2)

Vi(=a) (17)

where
Wa) =Vi(—a) = V_(a)
SA(e) = U(—a) — U()
Vila) = éilc—, @) — ¢i(a+, a)
V(a) = ¢_(0+,a) — ¢_(a—, a)
Uila) = ¢i(c—, a) + ¢4(a+, a)
U_(a) = ¢_(0+, a) + ¢_(a—, a)

a3 aJ
U(a) = £ (2, @) + 5; ¢..(z, @)

T=c—

r=a-{-

, I¢] Ie]
Ville) = — ¢z, 0) — — ¢, @)
ox dx

T=C— r=—a1{-

sinh (y¢/2)/(ve/2)
cosh (ya/2) cosh (vb/2)
ab v sinh (v¢/2)
2¢ sinh (ya/2) sinh (yb/2)
Yia+, @) = el_ig:o Y@ =a+ ¢ a).

H(a) =

K(a) =
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In each of the above two equations, there are two unknowns,
namely, U,/(e) and W_(e) in (16), and V,/(«) and S_() in

(17). These two equations, however, are not of the conven-

tional Wiener-Hopf type because of the presence of U, /'(—a)
and V,'(—a); consequently, they cannot be solved by the
standard techniques. In the following section, an ingenious
method originated by Jones [6] is applied so that each of
the above two equations is reduced to an infinite set of
simultaneous linear equations, the solution of which is
discussed in Section VI.

1V. SoLuTtIiONS OF WIENER-HOPF EQUATIONS

Let us consider (16) first. Without difficulty H(e) can be
divided into two functions: one is analytic in the upper half
a-plane defined by r>(—k,); the other is analytic in the
lower half a-plane defined by 7 < ky, namely,

H(a) = Hi(a)H (o) (18)
where

Hi(a) = H.(—a) = eh@

wr

- [0[ + i’Y2nc]
i 2n
. H -
n=1 B .
(2—”?1—) [ + 2y @3] @n — 1) [ + ¥ @n1ys]
(24
hl@) = —i—[clnc —alna — blnbd]

2r

() -]
e[ -]
() -

It also can be shown that H,(a) and H_(«) behave as ]al —%
as |a| - in the proper half a-plane. Substituting (18) into
(16), one has after certain arrangements

i

'sz

vb
tanh —
W_(a) 2

H () v

Uy (=a)
H_(a)

~ Hy@Uy' (@) = (19)

The left-hand side of (19) are all functions analytic in the
upper half a-plane, and the right-hand side are all functions
analytic in the lower half a-plane except for the last term.
It is important to notice that v~! tanh(y/2) has no singu-
larities other than simple poles in the lower half a-plane.
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Thus it can be broken down in the following manner:

tanh (vb/2) B i R,
v a1 @+ Y @—1)b

+ M (o) (20

in which R, is the residue at the simple pole o= —ivy @1
forn=1,2,3, - - -, and M_() is an analytic function in the
lower half a-plane, and will not be pursued here any further
since its explicit form is of no direct interest to the present
problem. R, can be found easily and is given by

27

R, =
b’Y(zn—nb

y o on=1,23---. (1)

Substituting (20) into (19) and making proper arrangements,
one obtains

1 2t
[a + 7;7(27;——1)6] b’Y(zn—nb
W) Ud(—a)M_(a)
H_(a) H_(a)

%m@W@+i

n=1
Uy Gy en-1p)
H—(“i‘)’(zn—l)b)
= 2 U,/ (% (an—130)
+ 2 : T
et by @a_nsle + Y @n—1ys] LH(—%¥ @n1y3)

U/ (—a)
T TH (@ ] @2)

Now the left-hand side of (22) is analytic in the upper half
a-plane defined by r>(—k;), while the right-hand side is
analytic in the lower half a-plane defined by = <k,. Since
these two half-planes overlap, both sides must be equal to a
polynomial P(«) by analytic continuation, provided that P(c)
has the proper algebraic behavior as « tends to infinity. To
determine P(«), the asymptotic behavior of the functions in
(22) should be examined. From edge condition that E,~zt
and H,~constant as z—-+0, and x=0 or g, it follows that
U,/(@)~|a| =t and W_(a)~|a| 1 as |« tends to infinity in
the appropriate half-plane. Using Liouville’s theorem [7],
it is easy to show that P(e) is identically zero. Then setting
the left-hand side of (22) equal to zero, one has

2t

L H @U@ + 3
2 it bY@l + 97 @notys]

U (v en—np)
H—(— Ty (2n—1)b)

0. (23)

The above equation holds for all «. Setting =7y em—1ys, fOr

m=1, 2, 3, - - -, an infinite set of simultaneous linear alge-
braic equations is developed, namely,
be

e ¥ @m—1)6H 1 2H{4Y (2m—1)b) th (2m—1)

M(2n--1)
=0

+3

(24)
n=1 Y (2m—1)b + Y 2n—1)b

form =1,2,38, - - -,
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where

2 U+' (7:’)’ (2n~1)b)

b‘Y(zn—an-_( —iy (2n—1)b)

Hn—1) = y forn=1,23,.-.

This set of equations will be examined in Section VI. Now
assume that {ue, 1)} is found. The solution of U, (a) im-~
mediately follows from (23), i.e.,

Mon—1

Ui () =

| : (25)
icH  (a) a2y o + 27 @n1)p

Next consider (17), the solutions of which can be obtained
in a similar manner, as given below:

ab 2k
Vi) ==
tc Ki(k)K (a)
ab + k)& n
D) Y 26)
2K (@) nmo @+ tyoms
where
—2V., (k) 20tk — vonp)
_-— n = ———————— V. (Cysns),
PTTRE T SyaKaGrm | Y
forn=1,2,8,--.

* 2inmc(a + Tyone)
Ki(a) = K_(~a) = ¢'@ :
e * gdm+www+mm

The set of undetermined constants {vs,} satisfies the fol-
lowing simultaneous linear equations:

1K 2k bl n -2
_LQ vo + Z . i =

2ka w0 —tk + yoy Ky (k)
— Y 23mpK  H{Y 2ms) d Van
1 2 T e Vom + Z ’
a{tyemy + k)2

47k

(vams — kYK (k)

n=0 "Y2mb + Y 2nb

m=1,23---. (27

So far, the two unknowns U,'(«) and V,/(«) in the Wieper-
Hopf equations are solved within two sets of constants
{/uzn—1} and {Vgn}. To determine these constants, two
infinite, simultaneous linear equations must be solved. In
the following section, the complete field solutions are
worked out first, while the examination of the two sets of
linear equations is relegated to Section VI.

V. FiELD SOLUTIONS

With solutions of U,'(«) and V,'(«) given by (25) and
(27), respectively, the complete reflected field inside the
waveguide and the radiated field outside the waveguide can
be found without difficulty.
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First consider the fields in the region 0<x<a. It can be
shown that 4 and B in (11) are related to U,/(a) and V,/(a)
in the following manner:

-1 -1 1}
A L{t+e 1—e (US(a)
( }=* | *,( |- e
(B)  2y| 1 1 JLV+<a)

14ew 1 —er

Substituting (28) into (11) and taking the inverse Fourier
transform, one has
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where

d
H+,(—7;'Y2nc> = H+(“)
da

a=—14Ygn, 9

d
K+’(—iym) = K+<04)
da

a=—1iYong*

Next consider the radiated field in the region a<x<ec. It
can be shown that C and D in (15) are related to U,’(«) and
V,'(«) in the following manner:

C) 1 e (1 — e7%), evo(l + e?)
(o (

2y(e"® — e \e (1 — %), ev¢(1 4 ¢b)

1 = U () U., U./(—
H (x Z) _.___+—‘)_ . < + (a) + U, ( a)>. (32)
2rJ _, 2 cosh (va/2) V() + Vi (—a)
) a ) Substituting (32) into (15) and taking the inverse cosine
-sinh y <90 - E) e do transform, one has
U@ + U (~a)
1 e V@ H,(x,2) = — f b ;
27 J _, 2v sinh (ya/2) v cosh 5
a b
-cosh vy <x - ?> e o -sinh [*y (Jc —a — 5)] cos azdo
for0 <z <a. (29) L[ e 4+ V(o)
27 vb
. ;. v sinh —
As expected, there are no other types of singularities than 2
simple poles in the integrand of (29). Evaluating the residue b
contributions in a straightforward manner gives the follow- .cosh [7(90 —a - _>:| cos aeda (33)
ing final results: 2
1) For 0<x<a and z<0, fora<z<e¢ and 2> 0.
b 1 © n
9 = - -] Dl L
c 2(]0) 2 K+(k) n=0 k + Z’Yan
°° 2(—1)»+1 o m— 2n — Dm,
-+ Z {I: ( Z Fin ] Ccos {( )ﬂ- i|e’¥<2n—1)a2}
n=1 aC’Y(zn—1)aH+(Z’Y(2n—1)a) m=1 Y @n—Ba T YEm-1)b a P
{ 2nar
i b(—1)"*1 cos x
d 72na — ad Vom a
Z 1 J evama | . 30)
n=1 K+(k) 2 m=0 Y2na + Y 2ma c'Y2nuK{—(7:72na) (
2) For 0<x<aand z>0,
H,( )—_b[1+i = }k
BT 4k Ky J°
. 2nm a
] 1 ] sin [ ( - 5)} ]
Mom—1 c
n=1 2n7r7'H+,(_7/72nc) m=1 Yone — VY (2m—1)b l:nﬂ' :| t
cos| —a |
¢ J
2nmw a ]
T wor [ TEE-)]
- 2ne Vom c |
+ > [ + I — A 31)
n=1 K+(]C) 2 m=1Yomb ~~ V2ne . . . nw
47’L7T"LK+,<—2727M) s l:“ a J
c




LEE: INFINITE ARRAY OF PARALLEL-PLATE WAVEGUIDES

Evaluating the foregoing integrals gives this final result:

ily’ 0 7; hd
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Voo

a
H,(z, ) = —0—[1 +

ikz
taxw T E g 2T mmb]e

d ad Mom--1 1 d 1
> {[ > : + s — ]
n=1 m=1 ¥ (2n—13b T ¥ 2m—1)b H+(7/Y(2n—1)b) * lda H+(a) =17 5, 135
2(—1)* . [(Qn - 1)7r< b ﬂ }
8N | —————— T — @ — — } |[e7V (210"
bey en—1yp b 2
n i {[ E+ '{*ym Vom (TYans — K)von _t?_ 1
n=1 2K+(7/anb) m—0 Yans T Yoms 2 da K_(a) a=ivp,
2k (=D a

]

nw
cosS | —

+ : .
K (B)K (Ty2ns) 1CY 2nd a

1

Mom--1

>

(o3}
sin [

2nw

c

(== 3)]
r—a—
2
€ Yanc?

[

aniHNI(ZI’yZm) m=1 Y (2m—1)b 'Yi’nc}

—ab 2k

nw
cos| —b
c J
R )
cos T—a— —
2
€ Yone®

2nm

Vom c

k — ’L.’anc i
[ ;L

4’/L7TK—, ('L"Y2nc) K+ (k)

Equations (30), (31), and (34) give the forms of the exact
solution of the thick-wall problem, which is indeed very
complicated. For practical purposes, it is sufficient to include
only the propagating modes in the field expressions. Now let
us assume that ¢<)\/2, i.e., the incident TEM mode is the
only propagating mode inside the waveguides. Then the far
field solution of the magnetic field can be greatly simplified,

namely,
ib Vo :I
—_—— ezkz}
4ka K_(k)

a
H,®(x,2) = ——[1
c

m=0 Yomb —

(34)
'Yan

nw
sin l:——- b]
c J

fora <z<c¢ and 22>0.

where (27) has been used to eliminate the infinite summa-
tion over py,. It is important to notice that (35) and (36)
contain only one unknown constant, namely, »,. Thus one
needs only to solve (27) for », alone in order to obtain the
most interesting quantities, namely, the far field in the empty
half-space, and the reflection coefficient inside the wave-
guides. Another interesting feature associated with (35) and
(36) is that the transmission coefficient 7" and the reflection
coefficient R are related exactly by T'=(a/c)(1—R). Hence,
knowing R allows direct determination of the entire scatter-
ing matrix.

for0<z<e¢, 22—+ = (35 VI. ON THE SOLUTIONS OF LINEAR EQUATIONS
b vo First let us consider the set of simultaneous linear equa-~
Hy(x,2) = — eikz tions for unknown { Mgn_l} in (24). Since the right-hand side
dka K_(k) of (24) is zero, the set {ﬂzn—l} has a nonzero solution only
for0<z<a z— — o (36) Wwhen its coefficient determinant vanishes identically, i.e.,
— vt (Fv1s —_— —
g 27w Y + v Y+ v
1 be Hz ( ) + 1 1
e — Y3b Q& -
v + v - 2y Y+ Vsb
= 0. 387
1 1 be o re) 1
_— —_ — vsoH  (vysp .
ves + V17 ¥ob + Y3p 4 " 25
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It should be noted that only the diagonal terms depend on c,
while the rest of the terms depend on b. Since ¢ and b can
be varied independently, it is clear that (37) cannot hold for
all values of ¢ and 4. Thus the only solution for (24) is

pon—y = 0, forn=1,2,8,---. (38)
Consequently, all the terms with sine variation along x in
(30), (31), and (34) are dropped. This is reasonable since the
incident field is “symmetrical” and all of the “asymmetrical”
field should not be excited. ‘

It remains to consider the other set of simultaneous linear
equations for »,, in (27). To the best of the author’s knowl-
edge, this set of equations cannot be solved exactly. Thus the
infinite number of equations must be truncated at a proper
finite number in order to obtain an approximated solution.
As the first step, it is imperative to determine the conver-
gence of the infinite set of equations or, equivalently, the
asymptotic behavior of »,,. By definition,

20tk — vam) :
T )¢
forn=1,23,---. (39
It can be shown that
Yaap ~ O(2n)
K (iyans) ~ O(2n)112 asn— o, (40)

Furthermore, since V,'(e) is proportional to E,, the edge
condition requires that

Vi (Fyans) ~ O(2n)—2/8 asn — o, (41)
It follows from (39) to (41) that
von ~ O(2n)~7/6 asn— o, 42)

Therefore, the series in (27) converges absolutely. If one
truncates the infinite set of equations at a finite number N,
and sets »,,=0 for n> N, the solution of these N equations
will converge to the exact value as IV increases indefinitely.
Once »,, is obtained, (30), (31), and (34) would give the
complete field solution. Therefore, in this sense, a method for
solution exists.

So far, no restriction has been put on b, the wall thickness.
For most practical cases, (b/)) is a small number compared
to unity. By making use of this fact, simplifications can be
made in the solution of »,. Rewrite the first equation (27):

icK . 2(k) 1 s Von —
[——* +-] kY, ——— = :
2ka 2k w1 —tktvas  Ki(k)

43)

For small (b/\) it can be shown that

O R R
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or
| K. (k)| ~0Q).

Thus the coefficient of », in (43) is in the order of O(1), and
those of vy, for n>>0 are O(b/N). It follows that

i4ka 1o ( ) 45)
A AV ) ANV
Substitution of (45) into (35) gives the far field
o al:l-l- b ]'k+0<b>2
= — _—_ e‘l 2 —— ,
Y c a + cK.2(k) A
asz— o (46)

and substitution of that into (36) gives the reflection coeffi-
cient

—b b\?
R-——+o(3).

a + cK (k) A
Therefore, the first-order solution of the far field and the
reflection coefficient assume very simple forms. Furthermore,

it is noted that K, (k) can be expressed in terms of tabulated
functions, namely,

(47)

K =expi] Slnat Sy — o1
- —expz[)\ na+—In e
a b
+Sl(~,o,o>+sl<—,o,o>
>\ N
[+
s(E00)]
X

o

Si(s, 0,0) = 2 [sin™ (u/n) — (u/m)]

n=1

(48)

where

is tabulated by Marcuvitz [8]. Thus no computer work is
required in calculating the numerical values of H,® and R
through (46) and (47). As a check on the accuracy of these
two expressions, one may define an error term e in the fol-
lowing manner:

Pz"‘" (Prad+Pref)
P;

€ =

X 100 percent (49)

where P,, P,.q, and Py are incident, radiated, and reflected
powers, tespectively. In this connection, it should be empha-
sized that even if e=0, it does not necessarily imply that the
value of R is absolutely correct. Thus ¢ measures only the
error committed in the power. A numerical example is given
in Fig. 3 and Table I. For the case (b/c)=(%) which corre-
sponds to a typical waveguide used in practice, the VSWR
equals 1.35, with about 2 percent of the power reflected back.
Therefore, wall thickness must be taken into consideration
if a perfect match is desired.
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Fig. 3. Reflection coefficients of radiation from an infinite array of
thick-wall waveguides.

TABLE 1
REFLECTION COEFFICIENTS AND POWERS

(c=0.48N)
a/\ b/ R Proa Pt €
0.43 0.05 0.0557¢i189.35° 0.994 0.004 | 4+0.2%
0.40 0.08 0.0925¢i193.2° 0.989 0.008 | 40.3%
0.36 0.12 0.1480¢197.2° 0.986 0.022 | —0.8%
0.30 0.18 0.2408¢:201.8° 0.937 0.058 | +0.5%;
0.24 0.24 0.3470¢#2045° 0.878 0.120 | 4+0.2%

VII. CONCLUSIONS AND GENERALIZATIONS

In this paper, the problem of broadside radiation from an
infinite array of parallel-plate, thick-wall waveguides excited
by incident TEM modes is investigated. For an arbitrary
wall thickness the exact forms of field solutions are given by
(30), (31), and (34) with constants »,, to be determined by
an infinite set of simultaneous linear equations in (27). It is
shown that »,, asymptotically decays as (2n)~7/¢, and there-
fore the infinite set of simultaneous linear equations can be
truncated at a finite number for an approximate solution.
For a small thickness of the wall, the explicit solutions of the
far field and the reflection coefficient are given by (46) and
(47), respectively, which are correct to the first order of
(b/N). By numerical examples it is shown that, for the com-
monly used waveguides, wall thickness does have an ap-
preciable effect on impedance. Consequently, it must be
accounted for in order to have a perect match.

Before concluding this paper, it is worth mentioning a few
generalizations to the present problem.

1) By properly superimposing two incident TEM modes,
the electric fields in both x and z directions may assume zero
values at y=0, and d, and consequently two conducting
planes may be placed at y=0 and d without causing any dis-
turbance. Therefore, the solution in this paper obtained
through a two-dimensional formulation may be applied to a
three-dimensional problem and checked by experimentation.

3N

2) Only the case with incident TEM modes is considered
in this paper. Generalizations to an arbitrary incident wave
can be achieved in a very similar manner. In particular, when
the incident wave is of TE type, it practically gives the solu-
tion of an infinite array of rectangular waveguides [5].

3) Animportant and as yet unsolved problem is the radia-
tion from a single waveguide covered with two ground
planes at its opening. The question naturally arises whether
it can be treated as a special case of the present problem
when the wall thickness approaches infinity. Recall that
the key point in solving (16) and (17) lies in the fact that
tanh (yb/2)/~v and coth (vb/2)/y have no branch singulari-
ties. In the limiting case when b—», this property is no
longer preserved. However, Mittra [9] recently examined the
transition from a function with poles to a function with
branch points, and showed the analytic continuation from a
closed-region problem to an open-region problem with suc-
cess. Therefore, it is felt that the solution of the single wave-
guide problem may be obtained from the result in this paper
although it is not obvious.

4) In this paper, only the broadside radiation is consid-
ered. For a scanning array where the main beam is pointed
at an arbitrary direction in the empty half-space, there result
two coupled Wiener-Hopf equations, which to the best of the
author’s knowledge cannot be solved by any known tech-
niques. In this case, the numerical method used by Galindo
and Wu [5] would be of value.
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