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Radiation from an Infinite Array of Parallel-Plate

Waveguides with Thick Walls

SHUNG WU LEE, MEMBER, IEEE

Abstract—A serni-itinite array of parallel-plate waveguides with

walls of finite thickness is excited by incident TEM modes in every wave-

goide identically. By proper application of the boundary conditions, two

Wiener-Hopf equations are obtained which, however, cannot be solved

by the standard techniques. A method originated by Jones [6] is applied

to recast these two eqnations so that the forms of the solutions are found.

The solntions involve constants to be determined by an infinite set of

linear simultaneous equations which converge absolutely. When the thick-

ness of the walls b is small compared with the wavelength 2, explicit

solutions in the order of O(b/1.) are found in very simple forms.

I. INTRODUCTION

T
HE PROBLEM of radiation from an infinite array

of parallel-plate waveguides is of great interest

theoretically and practically. In the theoretical aspect,

it offers an excellent example for the study of periodic struc-

tures. In particular, it was one of the first problems solved

exactly by the Wiener-Hopf technique [1]. From the prac-

tical point of view, it simulates a phased array of waveguides

which is widely used in today’s communication and radar

systems. Wu and Galindo [2], for example, made an interest-

ing investigation of the mutual coupling effects of phased

arrays by using the solution of this problem.

Most of the analyses in connection with this problem are

based on the assumption that the walls of the guides are

vanishingly thin. In practice, however, walls of appreciable

thickness are unavoidable. Therefore, it is desirable to study

the effect of this thickness on the radiation properties.

Among past works on the thick-wall probem, Epstein [3]

gave an empirical correction to the case of infinitely thin

wall based on experimental evidence. After an unsuccessful

attempt to find a rigorous theoretical solution, Primich [4]

attacked the problem by variational techniques, and ob-

tained some results checked well by experiments. Most re-

cently, Galindo and Wu [5] formulated the problem as an

integral equation which is valid for all scanning angles.

However, that integral equation, as stated by the authors, is

nonintegrable, and numerical methods using a high-speed

computer were resorted to for an approximated solution.

It is the purpose of this paper to present a solution based

on the Wiener-Hopf technique for the broadside radiation

of an infinite array of parallel-plate waveguides with thick

walls. Particularly when the thickness of the wall is small in

terms of wavelength, very simple expressions for the reflec-

tion coefficient and the radiated far field are obtained. Be-

cause of the complications and the lengthiness of the manip-

ulations, some detailed derivations are omitted in this paper;

interested readers are referred to a technical report under

the same title issued by Hughes Aircraft Company [10].

II. STATEMENT OF THE PROBLEM

Manuscript received September 15, 1966; revised December 19, Consider an infinite array of parallel-plate waveguides as

1966. The work reported in this paper was supported by the U. S. Air shown in Fig. 1. The thickness of the guide wall is b, and
Force Cambridge Research Laboratory, Bedford, Mass., under Con- the width of the guide is a. The dominant TEM modes are
tract AF-19(628)-4984.

The author is with the Electromagnetic Laboratory, Hughes Air- excited inside every waveguide with equal amplitude and

craft Company, Ground SystemsGroup, Fullerton, Calif. phase. The problem is then to find the radiated field in the
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empty half-space z>O, and the reflected field in the wave-

guides z <0.

From Maxwell equations, it is seen that the nonvanishing

field components are H., E=, and Eg which satisfy the follow-

ing equations:

18
IL(Z, 2) = — — H.(x, .z)

icdeo dz

(1)

(2)

(3)

where k= UV’R is the free-space wave number. The time

dependence exp – icot is suppressed throughout this paper.

Since the incident waves in every waveguide are identical,

the periodic nature of this problem allows one to consider

only a unit cell, say, the cell defined by O< x< C. Let the

incident field from the left in this cell be

(4)Hu (i) (x, ,s) = exp zkz.

Furthermore, divide this unit cell into two regions, namely,

0< X5 a and a< XS c, and let the total fields be

where the scattered field HJx, z) satisfies the wave equation

given by (l). Introducing the following Fourier transform

pair,

S.@(Z, a) = H.(z, z.) exp iadz (6)
—m

sH.(Z, 2) = : _“@(x, 04)exp ( –iaz)ciz (7)
m

(1) becomes, after taking the Fourier transform,

[+-’’]’(x)”) ‘0
(8)

where y = daz —kz. The complex a= u+ir plane is cut as

shown in Fig. 2, and the proper branch of v is chosen such

that Y++u as a approaches infinity along the positive real

axis.

Now the problem is to solve (8) subject to the follow-

ing boundary conditions:

1) The scattered tangential electric fields are zero at the

guide wall, namely,

E=(X, 2) = o forx=a, c; and z<O

E.(x, z) = o fora<z <c; and z=o.

2) The total fields are continuous at x= a.

3) The total fields at the plane x= O are identical to the

fields at the plane x= c.

The last condition arises from the periodic property of the

structure and the excitations.

@“+-- I

EMPTY HALF
SPACE

k=ti=

Fig. 1. Geometry of the problem.

IL

-+

-k
u

+k

Fig. 2. Complex a-plane and branch cut.

III. FORMULATIONS OF WIENER-H• PF EQUATIONS

For analytical convenience in the following discussion,

let us first introduce a small loss in the medium, i.e., k= kl

+ik, where k, is a small positive real number. Then it is

easy to show that, except for the incident field which in-

creases exponentially as Z+ — ~, the reflected field inside the

waveguide is attenuated at least as rapidly as exp (– kzl z] )

as z+–– m. Outside the waveguide only the radiated field

exists, and its is attenuated as exp ( —ka z) as z-+ cc. It follows

that the transformed wave equation (8) is valid only within

a strip in the complex a-plane defined by 17I < kz. Next

introduce the standard Wiener-Hopf notations:

sm

4+(L 4 = H.(x, z) exp iazdz (9)
o

J
o

@_(x, a) = HV(X, z) exp zhzdz (lo)
—w

where the subscript” +” signifies that 4+(x, a) is analytic in

the upper a-plane defined by r> (– kz), while the subscript
<6 >7— signifies that d_(x, a) is analytic in the lower a-plane

defined by T< kz. These and similar notations will be used

throughout this paper. Then the solution of (8) can be writ-

ten formally as, for the region O< x < a,

where A and B to be determined are functions of a. As for
the region a< x < c, a different transformed wave equation

instead of (8) should be used. Note that

s–m d2Hv
exp iazdz

o dzz

aH.— —— iaHJz, o) —O!kb+(z,a) (12)
dz ,=0
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where the first term in the right-hand side is proportional

to E= which is zero at a< x < c and z= O, while the second

term is unknown. Then after such a transform (1) becomes

[$- ‘1
‘Y 4+(% a) = 7iKHAq O) for a < x < c. (13)

To eliminate the unknown HU(X, O), change the sign of a and

add the resulting equation to (13). This gives

[s-~’I’’f’+(za’+~+ (z-a”=o

fora<x<c (14)

which is the desired wave equation. Its solution can be

written formally as, for the region a< x < c,

++(%a) + 4+(X, – a) = Ce–~” + DeY’. (15)

The next step is to eliminate A, B, C, and D by judiciously

applying the boundary conditions. Without going into de-

tail, the resultant two Wiener-Hopf equations are given here:

; H(a) u+’(a) = w.(a) –
tanh (-@/2)

U+’(–a) (16)
‘Y

2C
— K(a)v+’(a) = 5 + S’-(a)
aby 2

coth (-yb/2)
— V+’(–a) (17)

‘Y

where

w.(a) = V+(–a) – v.(a)

IL(a) = U+(–a) – u-(a)

V+(a) = rj+(c-, a) – @+(a+, a)

V-(a) = @.-(O+, a) – @_(a–, a)

U+(a) = f#J+(c-, a) + @+(a+, a)

U_(a) = #_-(O+, a) + @-(a–, m)

v+’(a) = ; @+(x, a) + : 4+(L 4
x=c— X=a+

v+’(a) = : I#J+(x,a) – :ax ++(%4
z==c— z=@-

H(a) =
sinh (7c/2)/(7c/2)

cosh (~a/2) cosh (~b/2)

K(a) =
ab ~ sinh (7c/2)

2C sinh (Ta/2) sinh (-@/2)

X(a+, a) = lim #(x = a + e, a).
.++0

In each of the above two equations, there are two unknowns,

namely, U+’(a) and W–(a) in (16), and V+’(a) and S–(a) in

(17). These two equations, however, are not of the conven-

tional Wiener-Hopf type because of the presence of U+’(– a)

and V+’(— a); consequently, they cannot be solved by the

standard techniques. In the following section, an ingenious

method originated by Jones [6] is applied so that each of

the above two equations is reduced to an infinite set of

simultaneous linear equations, the solution of which is

discussed in Section VI.

IV. SOLUTIONS OF WIENER-H• PF EQUATIONS

Let us consider (16) first. Without difficulty H(a) can be

divided into two functions: one is analytic in the upper half

a-plane defined by ~> ( — lcz); the other is analytic in the

lower half a-plane defined by, < kz, namely,

H(a) = H+(a) H-(a) (18)

where

H+(a) = H–(–a) = e~(”j

“g
: [a+%..]

a
[a+ i7(2n-,,a]

(2n – 1)
~2nb_ ~, [~+ ~1’(2n-l)b]

h(a) =–i~[cln c–alna–blnb]

~na=[(:)2-k’11’2

‘nb=[(?b’l’”

‘nc‘[(?)’ -’211’2

It also can be shown that H+(a) and H_(a) behave as I a I -~

as \ a] ~ UJ in the proper half a-plane. Substituting (18) into

(16), one has after certain arrangements

yb
tanh —

w-(a)
~ H+(a) U+’(a) = — –

2 U+’(–o!)

H_(a) H-(cY)

. (19)
‘Y

The left-hand side of (19) are all functions analytic in the

upper half a-plane, and the right-hand side are all functions

analytic in the lower half a-plane except for the last term.

It is important to notice that @ tanh(@/2) has no singu-

larities other than simple poles in the lower half a-plane.
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Thus it can be broken down in the following manner: where

tanh (@/2)
‘g ? - + M-(a) (20) 2 U+)(i~ ~~M_~~E,)

‘Y ~ + t-i (2n–l)b /J(2n-1) = , forn=l,2,3, .,..
b7(2.-1)bH_(–i7 (2.-1)b)

in which R. is the residue at the simple pole a= —iy fz~–1)~

forn=1,2,3, <c., and M–(a) is an analytic function in the This set of equations will be examined in Section VI. Now

lower half a-plane, and will not be pursued here any further assume that [ ~(z._l) ~ is found. The solution of U+’(a) im-

since its explicit form is of no direct interest to the present mediately follows from (23), i.e.,

problem. R. can be found easily and is given by

2i
R. =

b’)’(zm-l)b ‘
n=l,2,3 . . . .7 (21)

u+’(a) = 2 5 w“’ . (25)
icH+(a) .=l a + 27 (2n_l)~

Substituting (20) into (19) and making proper arrangements, Next consider (17), the solutions of which can be obtained

one obtains in a similar manner, as given below:

; H+(a) U+’(CJ + ~
1 2’i

n=, [a+ i7,2n--1)d b7,2n-,)~
v+’(~) = !! 2k

‘iC K+(k) K+(a)

u+’(i-y(2n_,)J W_(a) U+’(– cx)M_(a)
“+— ab(a + k) “

H–(–i~&n_~)b) H-(a) – H_(cY) + z “: (26)
2cK+(a) .=0 CY + ‘ty2nb

2’i U+’(i? (2A)b)

+5

[.=, 6~@-,)b[a + ~T&-l)b] H-’(–~w2.-1)~
where

U+’( – a)

1
. (22)

– 2v+’(k) 2(ik – ~~%b)
—

H-(cY) ‘0 = bK+(k) ‘
Vz?l= V+’ (h2.b) ,

b~z.bK+(i~z.~)

Now the left-hand side of (22) is analytic in the upper half

a-plane defined by 7> ( —k2.), while the right-hand side is

analytic in the lower half a-plane defined by 7< kz. Since

these two half-planes overlap, both sides must be equal to a

polynomial P(a) by analytic continuation, provided that P(a)

has the proper algebraic behavior as a tends to infinity. To

determine P(a), the asymptotic behavior of the functions in

(22) should be examined. From edge condition that EzWZ_l

and HV~constant as z~+O, and x= O or a, itfollows that

U+’(a)% I al –* and w–(a)- I al –1 as I al tends to infinity in

the appropriate half-plane. Using Liouville’s theorem [7],

it is easy to show that F’(a) is identically zero, Then setting

the left-hand side of (22) equal to zero, one has

; H+(a) CT+’(a) + jj
2’i

[~=1 by(z.–l)b a + h(2n-l)b 1
u+’(’i~ (zn_l)b).— = O. (23)

H_(– iy @?._~)b)

The above equation holds for all a. Setting a= i~,z~–l)b, for

m=l,2,3, . . . an infinite set of simultaneous linear alge-

braic equations ~s developed, namely,

bc
~ 7(z~–ubH~2(i7 (2in-l)b)P(Z?n-1)

+5 /.J(2n--l)

n=l y(2m–l)b + ?’(h--l)b

= O (24)

fornz=l,2,3, ...,

forn=l,2,3, . . . .

2&l-c(a! + ‘&.)
K+(a) = K-(–a) = e~t”) fi

.=l ab(a + i?’2.a) (a + h2.b)

The set of undetermined constants { V2. ~ satisfies the fol-

lowing simultaneous linear equations:

‘ icK+2(k) v~n –2

2ka
VO+5

n=o –’ii% + ~,~b = K+(k)

—C’Y2mbK+2(i72mb) Vzn
v27n + 5

a(~Y2mb + ~) 2 rL=O y2mb + y2nb

1 4ik
——

(T,mb – ~~c)K+(~) “

m=l,2,3, .-. . (27)

So far, the two unknowns U+’(a) and V+’(a) in the Wiener-

Hopf equations are solved within two sets of constants

{LmA] and {vz~~. To determine these constants, two
infinite, simultaneous linear equations must be solved. In

the following section, the complete field solutions are

worked out first, while the examination of the two sets of

linear equations is relegated to Section VI.

V. FIELD SOLUTIONS

With solutions of U+’(a) and V+’(a) given by (25) and

(27), respectively, the complete reflected field inside the

waveguide and the radiated field outside the waveguide can

be found without difficulty.
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First consider the fields in the region 0< x< a. It can be where

shown that A and Bin (11) are related to U+’(a) and V+’(a)
-7

in the following manner: H+’( – iy,n.) = : H+(a)

Al

11(B = 2y

da 1~_@2=c ,

–1 –1 ]

1 + e-~” 1 – e-~” I ~11+’(~))
K+’(–i-y’2n,) = ~: K+(a)

J
(28) m=—iy2nc.

1 1

1

(v+’(a) “
Next consider the radiated field in the region a< x< c. It

1 + e~a 1 – e?. can be shown that C and D in (15) are related to u+’(a) and

V+’(a) in the following manner:

Substituting (28) into (11) and taking the inverse Fourier ~

transform, one has
()

1

(

e~a(l — e~~), e“@(l + e~b)

D= 2~(e@ – e-~b) e-”@(l – e-?fb), e“/”(l + e-? ’b))
.

H,(z, z) = ~
s

u+’(a)

“(

u+’(a) + U+’( – a!)

2~ _m 27 cosh (7a/2) )v+’(a) + V+’(– a) “
(32)

() a
.sinh Y x — — e–~”’d~

2

I@s v+’(a)——
2T –~ 27sinh (Ya/2)

() a
. cosh Y x — — e–~mzda

2

for O < z <a. (29)

As expected, there are no other types of singularities than

simple poles in the integrand of (29). Evaluating the residue

contributions in a straightforward manner gives the follow-

ing final results:

1) For O<x<a and zSO,

Substituting (32) into (15) and taking the inverse cosine

transform, one has

“ u+’(a) + U+’(– a)
Hu(x, 2) = : s27r o yb

y cosh ~

“Sinh[y(’-a-w”sa’da

“ v+’(a) + V+’(– a)
+~ s —

27r o -yb
y sinh ~

“c0sh[7(x-a-31c0sa’da ’33)

fora<x<c and .z>O.

(30)

bl”l

[
—+? — 2 “:H.(x, ~) = – : If-+yk)

1
~–ikz

2 K+(k) rt=o ii + tyzn~

2(–1)”+1
+5

{[
)5

~2m–1

8=1 H (“ac7[2~_1). + z7c2~–l)@ ~=1 -y(z~-l). + 7(2m_1)5 lc0s[(2n : 1)7e’’”-1az}

[
2n7r

21c
b(– 1)”+1 COS

[1
—x

+5
1[

y2m. — ilk w Vzm
—+ z x

1

a

K+(k)
e’1%~~

n=l m=o ‘Y2W + ‘yZ?na CT2..K +(iy2J

2) For O~x<a and z~O,

[
Hy(x, z)=fl 1+:~

1
eikz

c 4k K_(k)

[

] ‘in[%(’-:)] I
+2

[

1
i

Mm-l
e—?’hcz

n=l 2n~iH+’( – iT2n,) ~=1 ‘yz~. — ?(2m–l)b

[1

nir 1
cos — a

c J

k – i72nc m u%

+2X

1

abcos[%(z-:)l ~
— ~–-rz... ‘

m=l y2mb — Y2nc

[1

n7r
4nm”K+’( – i~z..) sin — a

c J

(31)
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Evaluating the foregoing integrals gives this final result:

369

a

[

1 ivll

—+ + i i “:
1

~,kzH,(Z, z) = ; 1 + K+ylfi)

4kK_(ii) 2K+(k) ?n=l k + %Yzmb

{[
+s 5 lJ2m-1 1 dl

+ P2n-1 — —
?JSl rn=l Y(’n–l)b + ‘)’(2*l)b ~+(~~(2n-l)b) da H+(a) ~=iy(,m_l)~1

2k 1 (–l)”a rn7r / b\l )

‘ K+(k) K+(iy,.J J

2n7r

[

[(
sin — x—a—

5
/J’m-l

1

c

m=l y(2m—l)b — ~hc Cosk-d
Lc J J

r 2T1T {

Lc J

fora<x

Equations (30), (31), and (34) give the forms of the exact

solution of the thick-wall problem, which is indeed very

complicated. For practical purposes, it is sufficient to include

only the propagating modes in the field expressions. Now let

us assume that c< X/2, i.e., the incident TEM mode is the

only propagating mode inside the waveguides. Then the far

where (27) has been used to eliminate the infinite summa-

tion over v’fi. It is important to notice that (35) and (36)

contain only one unknown constant, namely, vO.Thus one

needs only to solve (27) for VOalone in order to obtain the

most interesting quantities, namely, the far field in the empty

half-space, and the reflection coefficient inside the wave-

guides. Another interesting feature associated with (35) andfield solution of the magnetic field can be

namely,

greatly simplified,

(36) is that the transmission coefficient T and the reflection

coefficient R are related exactly by T= (a/c)( 1—R). Hence,

knowing R allows direct determination of the entire scatter-

ing matrix.

VI. ON THE SOLUTIONSOF LINEAR EQUATIONS

[

ib VO
Hu(’)(z,z) .: 1 –— —

1
~tkz

c 4ka K-(k) ‘

First let us consider the set of simultaneous linear equa-

tions for unknown [M.-1 ] in (24). Since the right-hand side
of (24) is zero, the set {M.-l ) has a nonzero solution only

when its coefficient determinant vanishes identically, i.e.,

“o
H.(Z, ,2) = ~ — ~ihz

4ka K(k)

1
. . .

1

~lb + ?’6b“ilb + ~3b

1 1
...

~3b + 75’
= o. (37)

‘Y3b + ylb

1 1 bc 1

T
75bHy(?h’6b) + — “ “ “

z~5b?’6b + ‘Y3b~6b + ‘)’1” .
.

.
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It should be noted that only the diagonal terms depend on c,

while the rest of the terms depend on b. Since c and b can

be varied independently, it is clear that (37) cannot hold for

all values of c and b. Thus the only solution for (24) is

1.J2n-l = 0, forn=l,2,3, . . . . (38)

Consequently, all the terms with sine variation along x in

(30), (31), and (34) are dropped. This is reasonable since the

incident field is “symmetrical” and all of the “asymmetrical”

field should not be excited.

It remains to consider the other set of simultaneous linear

equations for vzn in (27). To the best of the author’s knowl-

edge, this set of equations cannot be solved exactly. Thus the

infinite number of equations must be truncated at a proper

finite number in order to obtain an approximated solution.

As the first step, it is imperative to determine the conver-

gence of the infinite set of equations or, equivalently, the

asymptotic behavior of vzn. By definition,

forn=l,2,3, . . . . (39)

It can be shown that

Furthermore, since V+’(a) is proportional to E,, the edge

condition requires that

~+’(’i~znb) w 0(2n)–2/3 as n-w. (41)

It follows from (39) to (41) that

Vzn =J 0(2n)–7jc asn~~. (42)

Therefore, the series in (27) converges absolutely. If one

truncates the infinite set of equations at a finite number N,

and sets v2n= O for n> N, the solution of these N equations

will converge to the exact value as N increases indefinitely.

Once vzn is obtained, (30), (31), and (34) would give the

complete field solution. Therefore, in this sense, a method for

solution exists.

So far, no restriction has been put on b, the wall thickness.

For most practical cases, (b/k) is a small number compared

to unity. By making use of this fact, simplifications can be

made in the solution of Vo. Rewrite the first equation (27):

[

Zw+yk) “

1

v%
+; V2.0+ g

–2

2ka
=— . (43)

n=l ‘iik+~f&b K+(k)

For small (b/k) itcan be shown that

K+(k)
%r(i:)eib’nb ‘s(+)+O ’44)

or

I K+(k)\ N O(l).

Thus the coefficient of V. in (43) is in the order of O(l), and

those of vzn for n> O are O(b/k). It follows that

i4ka

‘0 = K+(k) [a + cli+z(k)] ()
+0:. (45)

Substitution of (45) into (35) gives the far field

as z ~ co (46)

and substitution of that into (36) gives the reflection coeffi-

cient

–1) b,
R=

()
+O1. (47)

a + cK+2(k)

Therefore, the first-order solution of the far field and the

reflection coefficient assume very simple forms. Furthermore,

it is noted that K+(k) can be expressed in terms of tabulated

functions, namely,

[
K+(k) =expi ~lna+~lnb–$lnc

‘s’(:’OO)+s’(+’OO)

-4300)1

where

S1(P, O, O) = ~ [sin-’ (~/n) – (~/n)]
n-l

is tabulated by Marcuvitz [8]. Thus no computer

(48)

work is

required in calculating the numerical values of Hti(t) and R

through (46) and (47). As a check on the accuracy of these

two expressions, one may define an error term c in the fol-

lowing manner:

Pi – (Pr.d + Pr,f)
~= X 100 percent

P;
(49)

where P,, P,.d, and P,.f are incident, radiated, and reflected

powers, respectively. In this connection, it should be empha-

sized that even if e= O, it does not necessarily imply that the

value of R is absolutely correct. Thus ~ measures only the

error committed in the power. A numerical example is given

in Fig. 3 and Table I. For the case (b/c)=(~) which corre-

sponds to a typical waveguide used in practice, the VSWR

equals 1.35, with about 2 percent of the power reflected back.

Therefore, wall thickness must be taken into consideration

if a perfect match is desired.
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TABLE I

REFLECTION COEFFICIENTS AND POWSRS

(C =0. 48k)

a/A b/k R P,ad Pr.f e
——

0.43 0.05 0.0557e~lsgas0 0.994 0.004 +0.2%

0.40 0.08 0.0925 ei1g320 0.989 0.008 +0.3%

0.36 0.12 0. 1480e~1gTZ0 0.986 0.022 –0.8~

0.30 0.18 0. 2408e~z01.g0 0.937 0.058 +0.5%

0.24 0.24 0. 3470ei204s0 0.878 0.120 +0.2%

VII. CONCLUSIONSAND GENERALIZATIONS

In this paper, the problem of broadside radiation from an

infinite array of parallel-plate, thick-wall waveguides excited

by incident TEM modes is investigated. For an arbitrary

wall thickness the exact forms of field solutions are given by

(30), (31), and (34) with constants v,. to be determined by

an infinite set of simultaneous linear equations in (27). It is

shown that vzmasymptotically decays as (2n)–71G, and there-

fore the infinite set of simultaneous linear equations can be

truncated at a finite number for an approximate solution.
.. For a small thickness of the wall, the explicit solutions of the

far field and the reflection coefficient are given by (46) and

(47), respectively, which are correct to the first order of

(b/A). By numerical examples it is shown that, for the com-

monly used waveguides, wall thickness does have an ap-

preciable effect on impedance. Consequently, it must be

accounted for in order to have a perect match.

Before concluding this paper, it is worth mentioning a few

generalizations to the present problem.

1) By properly superimposing two incident TEM modes,

the electric fields in both x and z directions may assume zero

values at y= O, and d, and consequently two conducting

planes may be placed at y= O and d without causing any dis-

turbance. Therefore, the solution in this paper obtained

through a two-dimensional formulation may be applied to a

three-dimensional problem and checked by experimentation.
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2) Only the case with incident TEM modes is considered

in this paper. Generalizations to an arbitrary incident wave

can be achieved in a very similar manner. In particular, when

the incident wave is of TE type, it practically gives the solu-

tion of an infinite array of rectangular waveguides [5].

3) Au important and as yet unsolved problem is the radia-

tion from a single waveguide covered with two ground

planes at its opening. The question naturally arises whether

it can be treated as a special case of the present problem

when the wall thickness approaches infinity. Recall that

the key point in solving (16) and (17) lies in the fact that

tanh (-@/2)/y and coth (-@/2)/7 have no branch singulari-

ties. In the limiting case when b+ m, this property is no

longer preserved. However, Mittra [9] recently examined the

transition from a function with poles to a fimction with

branch points, and showed the analytic continuation from a

closed-region problem to an open-region problem with suc-

cess. Therefore, it is felt that the solution of the single wave-

guide problem may be obtained from the result in this paper

although it is not obvious.

4) In this paper, only the broadside radiation is consid-

ered. For a scanning array where the main beam is pointed

at an arbitrary direction in the empty half-space, there result

two coupled Wiener-Hopf equations, which to the best of the

author’s knowledge cannot be solved by any known tech-

niques. In this case, the numerical method used by Galindo

and Wu [5] would be of value.
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